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ON GEOMETRY OF YOUNG DIAGRAMS FOR ARNOLD

PERMUTATIONS

Abstract. In this paper we study geometry of Young diagrams
for the special class of permutation called (C,B,A)-permutations (or
Arnold permutations). In particular we compute the averages of such
Young diagrams and compare them with the averages of arbitrary Young
diagrams.

1. Introduction

In [1] a method of studying permutations, which is based on the ge-

ometry of Young diagrams is suggested.

Let us consider an arbitrary permutation. This permutation can be

decomposed into independent cycles. Ordering cycles’ lengths descend-

ing, we obtain sequence {a1, a2, . . . , ah}, where h is the number of cycles

and ai are the lengths of corresponding cycles. Construct the set or

single squares, whose first row contains a1 squares, the second one con-

tains a2 squares, and so on. This figure is said to be Young diagram of

permutation.

It is natural to consider the following geometric characteristics of Young

diagram:

• height h of Young diagram,

• length l := a1 of Young diagram,

• area n := a1 + . . .+ ah of Young diagram,

• vertical and horizontal asymmetries µ := h/l and η := l/h of

Young diagram,

• density λ := n/(h · l) of Young diagram.

In [1] computations of Young diagrams’ averages ĥ, l̂, µ̂ and λ̂ for

permutations with n 6 7 are provided and conjectures about asymptotics
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of these averages as n→∞ are formulated:

ĥ(n) ∼ c1 lnn, l̂(n) ∼ c2n, λ̂(n) ∼ c3/ lnn, µ̂(n) ∼ c4 lnn/n.

A.M. Vershik informed us that these propositions had been proved

in [5, 6].

Also V.I. Arnold suggested studying a special class of the following

permutations. Consider set {1, 2, . . . , n}. Divide it into three non-empty

blocks {A,B,C} (which consist of sequent numbers) of a, b and c sizes

correspondingly and move them in the following way: {C,B,A}. The

resulting permutation is said to be (C,B,A)-permutation (or Arnold per-

mutation) and is denoted by σ(a, b, c).

The problem os studying (C,B,A)-permutations is the discrete analog

of interval exchange transformations problem (see [2]).

The aim of this paper is studying the geometry of the Young diagrams

of Arnold permutations. In particular, we compute the averages of the

Young diagrams for (C,B,A)-permutation. It appears that some of them

coincide with Goncharov, Vershik and Shmidt asymptotics.

2. Height of Young diagram for Arnold permutation

Recall that in [4] the ergodic criterion of Arnold permutation was ob-

tained. In terms of the Young diagrams ergodicity of permutation means

that its Young diagram has height 1. Also in [4] the proportion of ergodic

Arnold permutations was computed.

2.1. Generalization of ergodic criterion. The following theorem gen-

eralizes this result.

Theorem 1. The height of the Young diagram for Arnold permutation

σ(a, b, c) is equal to h = GCD(a+ b, b+ c).

Proof. Recall that quantities σ(i)− i, where i = 1, . . . , n, are called steps

of permutation σ.

There are only three steps SC , SB and SA in (C,B,A)-permutations:

SC = σ(i) − i, where σ(i) ∈ C, SB = σ(i) − i, where σ(i) ∈ B and

SA = σ(i)− i, where σ(i) ∈ A.

It is clear that

SC = a+ b, SB = a− c, SA = −b− c.
Besides, SB = SA + SC .

Now let us prove Theorem 1.
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1. If GCD(SC , SB, SA) = h, then the number of cycles in permutation

σ(a, b, c) is not less than h, because in one cycle there can be only numbers

comparable with each other by modulo h. Hence numbers 1, 2, . . . , h

belong to different cycles.

2. Now we prove that the number of cycles is not more than h. It’s

enough to prove that each cycle of our permutations contains all numbers

comparable with each other by modulo h.

Consider an arbitrary cycle of permutation σ(a, b, c). If we complete it

once, we obtain: xSA + ySB + zSC = 0 (here x is the number of steps SA
in cycle, y is the number of steps SB and z is the number of steps SC).

Hence we get (x+ y)(b+ c) = (y + z)(a+ b).

As GCD(a+ b, b+ c) = h, then

x+ y > a+ b

h
and y + z > b+ c

h
.

Adding these inequalities, we obtain:

x+ 2y + z > a+ 2b+ c

h
.

Assume that all numbers in our cycle are comparable with number k

by modulo h, where 1 6 k 6 h. It is easy to see that y > [a+b−k
h

]− [a−k
h

].

Therefore, x+ y + z > [a+b+c−k
h

] + 1 = [n−k
h

] + 1.

As there are [n−k
h

] + 1 numbers less than n+ 1, which are comparable

with k by modulo h, then our cycle contains all numbers comparable

with k by modulo h.

Hence, there are h cycles in our permutation. �

Remark. It follows from the proof of Theorem 1, that the cycles of

(C,B,A)-permutation contain all numbers less than n+1 and comparable

with each other by modulo h. In particular the length of Young diagram

equals [n−1
h

] + 1.

2.2. Proportion of Arnold permutations with h cycles.

Corollary 1. Proportion δn(h) of Arnold permutations with h cycles and

length n asymptotically equals 1
ζ(2)
· 1
h2 as n → ∞ and h fixed (here ζ is

Riemann zeta-function).

Proof. Consider Arnold permutation σ(a, b, c). Let us define

x :=
b+ c

h
=
n− a
h

and y :=
a+ b

h
=
n− c
h

.

Then it follows from Theorem 1 that the set of Arnold permutations with

h cycles corresponds to the set of points with mutually-prime coordinates
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in

4n = {(x, y) ∈ Z2 : x < n/h, y < n/h, x+ y > n/h}.
So, we should compute the proportion of points with mutually-prime

coordinates in 4n as n→∞. We resort to the following Theorem.

Theorem 2 (Arnold Theorem of uniform distribution; see [3]). The set

of integer points with mutually-prime coordinates is distributed uniformly

on the plane (Fig. 1) with the density 1/ζ(2) = 6/π2.

Figure 1. Uniform distribution: black points have

mutually-prime coordinates, and white points don’t.

So to prove our Theorem it’s enough to apply the Arnold Theorem of

uniform distribution to the convex bulls of sets 4n. �

3. Young diagrams

Using corollary 1, one can find the averages of the Young diagrams for

(C,B,A)-permutations. To do this we need the following definition.

3.1. Calendar Young diagrams.

Definition. Young diagram is said to be calendar, if the lengths of its

rows differ not more than by 1.

Next corollary follows from Theorem 1.

Theorem 3. All Young diagrams for (C,B,A)-permutations are calen-

dar (Fig. 2, 3).

Corollary 2. Order of arbitrary Arnold permutation 6 n2−1
4

.

Theorem 4. Calendar Young diagram is uniquely defined by its height.

Proof. Indeed, the lengths of the rows of calendar Young diagrams is

uniquely expressed through its area and height. �
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Figure

2. Permutation

σ(1, 2, 7)
Figure

3. Permutation

σ(2, 3, 7)

3.2. Averages. Theorem 4 and Corollary 1 make it possible to obtain

the averages of the Young diagrams for Arnold permutations.

Theorem 5. Asymptotics of the Young diagrams’ average characteris-

tics for Arnold permutations and arbitrary permutations are given in the

following table. Here c ≈ 0.62 is Golomb constant.

Average (C,B,A)-permutations Arbitrary permutations

height ĥ
1

ζ(2)
lnn lnn

length l̂
ζ(3)

ζ(2)
n cn

density λ̂ 1
1

lnn

asymmetry µ̂
1

ζ(2)

n

lnn

asymmetry η̂
ζ(4)

ζ(2)
n ?

Table 1.

Proof. Let f be an arbitrary function on the Young diagrams for Arnold

permutations. Then it follows from Theorem 4 that this function can be

considered as function on height h of Young diagram. Hence its average

f̂ equals

f̂(n) ∼
n∑

h=1

δn(h)f(h) ∼ 1

ζ(2)
·

n∑

h=1

f(h)

h2
.
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For example, let us compute average length l̂ of Young diagram. Set-

ting in the previous formula f(h) = l(h) =
[
n−1
h

]
+ 1, we obtain

l̂(n) ∼ 1

ζ(2)

n∑

h=1

1

h2

([n− 1

h

]
+ 1
)
∼ 1

ζ(2)

n∑

h=1

n

h3
∼ ζ(3)

ζ(2)
n.

Other asymptotics are proved in the same way. �

3.3. Limit form. Finally we study the limit form of the calendar Young

diagrams.

Definition. Consider set of Young diagrams, whose first rows start with

the common square. We rotate these diagrams with respect to this square

by 90◦ and contract them by
√
n times. Then this set of Young diagrams

will fill in some figure as n → ∞. This area is said to be limit form of

the set of Young diagrams.

Theorem 6. Limit form of the set of calendar Young diagrams is curvi-

linear triangle bound by the coordinate axes and by hyperbola y = 1/x

(Fig. 4, 5, 6).

Proof. Consider an arbitrary calendar Young diagram. The length of its

first row is equal to [n−1
h

] + 1, the length of the next row is equal to

[n−2
h

] + 1, . . . , and the last row has length [n−h
h

] + 1.

After the transformation of the Young diagram described above the

columns of the diagram have height ([n−1
h

] + 1)/n ∼ 1/h as n → ∞.

Therefore the limit form is bound by coordinate axes and hyperbola

y = 1
x
. �
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Figure 4. n = 100

Figure 5. n = 200
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Figure 6. n = 1000
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